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Abstract
Knowledge Base Question Answering (KBQA) combines
large language models (LLMs) with knowledge bases (KBs)
to solve complex problems, demonstrating significant po-
tential in addressing intricate queries. Traditional step-by-
step reasoning and correction frameworks, while improv-
ing reliability and efficiency, often suffer from high com-
putational overhead and vulnerability to errors in the initial
stages, leading to increased correction costs. To tackle these
challenges, we propose a novel KBQA framework that in-
tegrates subgraph-based reasoning with a multi-agent sys-
tem to enhance accuracy, robustness, and efficiency.Our ap-
proach employs three specialized agents—CandidateFinder,
PathFinder, and SelfCorrector—that collaboratively handle
subtasks such as entity recognition, relation extraction, evi-
dence retrieval, and iterative error correction. By leveraging
subgraph information and a dynamic feedback mechanism,
the framework mitigates logical deviations and error propa-
gation while reducing computational demands. Experimental
results demonstrate that this method significantly improves
reasoning depth, recall, and answer consistency, effectively
handling complex multi-hop queries across diverse KBQA
tasks.

Introduction
Knowledge Base Question Answering (KBQA) has become
a crucial field in natural language processing (NLP), aim-
ing to interpret and respond to natural language questions by
leveraging large structured knowledge bases (KBs) such as
Wikidata, DBpedia, and Freebase. KBQA is widely applied
in digital assistants, search engines, and specialized knowl-
edge retrieval systems across domains like healthcare and fi-
nance. However, traditional KBQA methods, which rely on
predefined question templates and rule-based approaches,
often struggle with the complexity and variability of natural
language queries. Early frameworks such as KBQA success-
fully demonstrated that mapping queries to templates could
enhance retrieval efficiency and accuracy in structured KBs,
although these methods faced challenges with adaptability in
handling dynamically evolving and diverse question forms
(Cui et al. 2019).

The rise of large language models (LLMs) has led to
more sophisticated KBQA frameworks capable of contex-
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tual learning and adapting to new queries with minimal
training data. Few-shot In-Context Learning (ICL) frame-
works allow KBQA models to generate logical forms on
the fly by learning from a limited set of examples, mak-
ing them suitable for low-data scenarios. Despite their suc-
cess, these frameworks are limited by their context length
and may struggle with longer or more complex queries (Li
et al. 2023). To further enhance KBQA frameworks’ effec-
tiveness, AgentBench was developed as a comprehensive
evaluation tool, assessing LLMs’ multi-turn reasoning and
decision-making abilities across diverse real-world tasks.
Findings from AgentBench highlight the strengths of LLMs
in practical reasoning tasks, yet reveal significant gaps in
multi-turn task management and sustained accuracy, point-
ing to areas where KBQA models require refinement (Liu
et al. 2023).

In addition, Few-shot Transfer Learning introduces a hy-
brid approach that integrates supervised models with in-
context learning, allowing KBQA systems to perform cross-
domain question answering. This framework demonstrates
strong performance in domains with sparse labeled data but
suffers from increased computational requirements due to
its complex architecture (Patidar et al. 2024). FlexKBQA,
meanwhile, mitigates the data scarcity issue by synthesiz-
ing training data, thus reducing reliance on labeled datasets
and achieving commendable results in zero-shot settings, al-
though the model’s accuracy can be influenced by discrep-
ancies between synthetic and real data distributions (Li et al.
2024).

For more adaptable KBQA, KS-LLM combines in-
context learning with knowledge selection mechanisms that
employ relevant supporting documents to aid logical form
generation. This design improves accuracy by drawing on
external evidence, yet it still depends heavily on initial en-
tity selection, which may not always align with the desired
context (Zheng et al. 2024). Addressing this, QueryAgent
implements an environmental feedback mechanism for it-
erative self-correction, allowing for dynamic response ad-
justments. This method significantly reduces logical errors
in multi-hop reasoning, although the process introduces la-
tency in response times due to multiple correction stages
(Huang et al. 2024).

Despite these advancements, KBQA still faces notable
challenges. Many frameworks are hampered by their inabil-



ity to maintain high efficiency in computationally intensive
multi-role or iterative systems. Additionally, issues with er-
ror propagation remain pervasive, particularly in multi-hop
reasoning tasks where each inference step builds upon the
last. Furthermore, most current models lack a flexible feed-
back mechanism to dynamically adjust to logical deviations,
making them less robust in complex real-world applications.

To overcome the challenges in existing KBQA methods,
we propose a novel framework based on a Multi-Agent Sys-
tem (MAS). This framework leverages a modular architec-
ture where multiple specialized agents—CandidateFinder,
PathFinder, and SelfCorrector—collaboratively handle
distinct subtasks, including entity recognition, relation ex-
traction, and evidence retrieval. Each agent focuses on a spe-
cific aspect of the KBQA process, enhancing reasoning ac-
curacy and reducing error rates. By incorporating dynamic
feedback mechanisms and a multi-step self-correction
process, the MAS framework addresses logical inconsisten-
cies, minimizes error propagation, and ensures robust per-
formance in complex multi-hop reasoning scenarios. Fur-
thermore, the use of subgraph-based reasoning enhances
efficiency, enabling the framework to handle diverse and in-
tricate queries with lower computational costs.

The key contributions of our work are as follows:

1. Multi-Agent KBQA Framework: We introduce a novel
multi-agent KBQA framework that combines Candi-
dateFinder, PathFinder, and SelfCorrector. These agents
collaboratively address the challenges of multi-hop rea-
soning, ensuring a structured and scalable approach to
KBQA.

2. Subgraph-Driven Reasoning: By utilizing a subgraph-
based reasoning strategy, the framework improves query
efficiency and answer precision. This approach effec-
tively narrows the search space, enabling the model to
focus on relevant entities and paths.

3. Dynamic Feedback Mechanism: The integration of dy-
namic feedback allows the agents to adjust their reason-
ing strategies dynamically, reducing logical errors and
improving overall consistency.

Preliminary
Definition 1: Knowledge Base (KB). A Knowledge Base
(KB) is defined as K = {(s, r, o) | s ∈ E, r ∈ R, o ∈
E ∪L}, where s represents an entity, r represents a relation,
and o can be either an entity or a literal(Luo et al. 2023a).
The set E contains all entities, while the set R contains
all relations. Each entity e ∈ E is identified by a unique
ID, for example, e.id = ”m.123abc”, and can be queried
to retrieve its label, e.g., e.label = ”Albert Einstein”.
Each relation r ∈ R has a hierarchical label, for instance,
r = ”person.education.university”. This structure al-
lows entities and their relationships to be queried and an-
alyzed.

Definition 2: Logical Form. A logical form is a for-
mal representation of a natural language question, typically
structured to perform operations on a KB(Luo et al. 2023a).

For instance, in the S-expression format, a logical form usu-
ally includes projection operations and other logical oper-
ators. A projection refers to a one-step query over a triple
(s, r, o). For example, querying for an object given a relation
is represented as (?, r, o), which is denoted as (JOIN r o).
Conversely, querying for a subject given a relation is repre-
sented as (s, r, ?), denoted as (JOIN (R r) s). Other common
operators such as AND, COUNT, and ARGMAX are described
in more detail in Appendix A.

Definition 3: LLM-based Agents. Large language
model-based agents have gained increasing attention due to
the remarkable emergent capabilities of LLMs, leading re-
searchers to leverage these models for building AI agents
(Xi et al. 2023). The framework proposed by (Xi et al. 2023)
consists of three components: brain, perception, and action,
adaptable to various applications. The brain, powered by an
LLM, serves as the core of the agent’s intelligence, handling
memory storage, information processing, decision-making,
reasoning, and planning. The perception module broadens
the agent’s input to a multimodal space, incorporating sen-
sory modalities like sound and visuals, which enhances en-
vironmental awareness. Finally, the action module extends
the agent’s ability to generate outputs, perform actions, and
use tools, enabling it to interact with and influence its envi-
ronment.

Semantic Parsing (SP) methods. SP methods learn to
transform the given question Q into a logical form F =
Sp(Q), where Sp(.) is the semantic parsing function(Sun
et al. 2020). The logical form F is then converted into an
equivalent SPARQL query q = Convert(F ), using the con-
version function Convert(.). Finally, the query q is executed
against the knowledge base K, yielding the final set of an-
swers A = Execute(q | K), where Execute(.) represents the
query execution function.

Information Retrieval (IR) methods. In contrast to se-
mantic parsing methods, Information Retrieval (IR) meth-
ods focus on extracting relevant knowledge graph (KG) in-
formation directly, without requiring the transformation of
questions into logical forms(Zhang et al. 2022). Given a nat-
ural language question Q, IR methods retrieve a KG sub-
graph GQ that is most relevant to the query. This is achieved
through a retrieval function R(Q,K), where K is the entire
knowledge graph, andGQ ⊂ K. The retrieved subgraphGQ

serves as the input for reasoning models to infer the correct
answer.

Formally, IR methods involve two steps:

1. Retrieval: Identify GQ = R(Q,K), where R(.) selects
entities, relations, and paths in the KG based on their rel-
evance to Q.

2. Reasoning: Apply reasoning models f to predict the an-
swer A = f(Q,GQ).



Related Work
In the domain of KBQA, advancements in Large Lan-
guage Models (LLMs) have significantly enhanced the abil-
ity to parse complex queries. Many KBQA systems adopt
generation-retrieval frameworks, where logical form gen-
eration and retrieval are tightly integrated to improve ac-
curacy and interpretability. For example, FlexKBQA and
ChatKBQA employ this approach by combining candidate
response generation with knowledge base retrieval, enabling
more precise question interpretation and answer genera-
tion (Li et al. 2024; Luo et al. 2023a). Similarly, Few-
shot In-context Learning and Code-Style In-Context Learn-
ing optimize logical form generation, albeit using different
techniques. Few-shot In-context Learning leverages small
datasets to iteratively refine logical forms, while Code-Style
In-Context Learning translates these forms into code to re-
duce syntax errors and improve learning efficiency, though
both face limitations in handling complex, multi-hop reason-
ing tasks (Li et al. 2023; Nie et al. 2024).

Recent innovations address challenges in handling in-
tricate queries. The Triad framework employs multi-agent
collaboration to decompose question-answering tasks into
stages, improving multi-hop reasoning by dividing the
workload among specialized agents, albeit with increased
complexity (Zong et al. 2024). Similarly, the ”Make a
Choice” framework introduces in-context learning tailored
for decision-making in constrained-choice scenarios, en-
hancing adaptability but remaining limited by parsing ac-
curacy (Tan et al. 2023). These approaches exemplify the
growing emphasis on task-specific frameworks to address
complex KBQA challenges.

Retrieval-focused advancements have also played a cru-
cial role. KS-LLM combines triple-based knowledge with
evidence retrieval to enhance QA performance while mit-
igating hallucinations, though noise remains a challenge
when retrieval fails (Zheng et al. 2024). Few-shot Trans-
fer Learning demonstrates efficacy in low-data scenarios by
combining supervised models with LLM-based re-ranking
to refine logical form generation, though frequent API calls
significantly increase computational costs (Patidar et al.
2024). SEMQA integrates multi-source information for an-
swer verification, but its reliance on diverse data sources am-
plifies noise and hallucination issues (Schuster et al. 2023).

Subgraph Retriever (SR) and ReaRev have pushed the
boundaries of reasoning efficiency. SR decouples subgraph
retrieval from reasoning, reducing noise and excelling in
multi-hop QA, though it struggles with incomplete KGs
and complex queries (Zhang et al. 2022). ReaRev builds
on SR by incorporating adaptive reasoning mechanisms
that dynamically adjust reasoning paths using Breadth-First
Search (BFS) strategies and graph-aware updates, achieving
high precision in incomplete KG scenarios (Mavromatis and
Karypis 2024).

For large-scale KB reasoning, Reasoning on Graphs
(RoG) integrates LLMs’ natural language capabilities with
KG structural information through a plan-retrieve-reason
framework. RoG enhances reasoning by generating rela-
tion paths, addressing hallucinations and knowledge gaps,
and stands as the current state-of-the-art (SOTA) method

due to its balance of efficiency and interpretability (Luo
et al. 2023b). Similarly, GNN-RAG combines Graph Neural
Networks (GNNs) with Retrieval-Augmented Generation
(RAG) to extract candidate paths from dense subgraphs and
complements this with LLM reasoning for multi-hop tasks.
Despite its effectiveness, GNN-RAG’s computational de-
mands limit its scalability (Mavromatis and Karypis 2024).

Among these, RoG is recognized as the leading SOTA
method in KBQA, offering strong interpretability and per-
formance while leaving room for future advancements to op-
timize computational efficiency.

Methodology
Overview
Our overall framework, as shown in Figure 1, consists of
three agents—CandidateFinder, PathFinder, and SelfCor-
rector—and three supporting modules—SubgraphRetriever,
ToolFunctions, and ThoughtBeforeThought. The Sub-
graphRetriever module facilitates the extraction and refine-
ment of relevant entities and relations from the knowledge
base, reducing the search space and eliminating the need for
SPARQL query generation. Within this module, ToolFunc-
tions such as get relations(entity) and get neighbors(entity,
relation) are employed to retrieve relationships and neigh-
bors of entities, forming the basis of the subgraph. The
ThoughtBeforeThought module pre-processes the question,
assisting the agents in identifying initial reasoning steps and
prioritizing relevant entities. The three agents work collab-
oratively: CandidateFinder identifies potential answer can-
didates by analyzing the subgraph, PathFinder explores rea-
soning paths linking the question to these candidates, and
SelfCorrector iteratively validates and refines intermediate
results to ensure reasoning accuracy and robustness. This
integrated framework combines the strengths of efficient
subgraph retrieval, advanced reasoning through fine-tuned
Large Language Models (LLMs), and error correction via
the SelfCorrector, resulting in a robust pipeline capable of
delivering precise answers for multi-hop KBQA tasks.

SubgraphRetriever
Our methodology leverages the SubgraphRetriever proposed
by Zhang et al. (Zhang et al. 2022), which is designed to
retrieve relevant subgraphs for multi-hop KBQA. This ap-
proach decouples the subgraph retrieval process from rea-
soning, enabling more accurate and efficient reasoning over
large knowledge bases.

Path Expansion and Subgraph Induction The Sub-
graphRetriever retrieves subgraphs through a two-step pro-
cess:

• Path Expansion: Starting from the topic entity, relevant
paths are expanded iteratively by scoring relations based
on their relevance to the question using embedding-based
similarity measures. The top-K paths are selected using
a beam search.

• Subgraph Induction: The expanded paths are merged
into a unified subgraph by combining overlapping enti-



Figure 1: The figure illustrates the proposed KBQA methodology framework, which integrates subgraph traversal, Graph Neu-
ral Networks (GNNs), and fine-tuned Large Language Models (LLMs). Subgraph traversal functions extract relationships and
neighbors from the knowledge base, forming the initial subgraph. The GNN processes the subgraph to capture structural de-
pendencies, while the LLMs perform iterative reasoning to identify reasoning paths and validate answers. This pipeline ensures
efficient and accurate multi-hop question answering by combining knowledge retrieval, graph-based reasoning, and language
model capabilities.

ties and retaining relations connecting the topic entities
to candidate answers.

Training Strategies The retriever utilizes a combination
of training strategies, including weakly supervised pre-
training based on shortest paths, unsupervised pre-training
with pseudo labels, and end-to-end fine-tuning that incorpo-
rates feedback from the reasoning process.

Advantages By retrieving smaller and more focused sub-
graphs, this method reduces reasoning complexity while
maintaining high answer coverage. It has been shown to
achieve state-of-the-art results in embedding-based KBQA
models (Zhang et al. 2022).

In this work, we adopt SubgraphRetriever (Zhang et al.
2022) as a core component of our KBQA pipeline to ensure
efficient and accurate subgraph retrieval for multi-hop rea-
soning. By leveraging the retrieved subgraphs as the knowl-
edge source for question answering, our approach elimi-
nates the need for generating SPARQL queries, simplifying
the KBQA process. This information retrieval-based method
significantly reduces the complexity of the reasoning task
while maintaining high answer coverage and accuracy.

CandidateFinder: Iterative Adaptive Reasoning
Candidates Finding Agent
Inspired by the ReaRev approach (Mavromatis and Karypis
2022), our CandidateFinder leverages adaptive reasoning
techniques with GNNs to identify candidate answer entities
for multi-hop KBQA. The module incorporates adaptive in-
struction decoding and execution to iteratively refine the rea-
soning process and accurately locate potential answers.

Instruction Decoding and Execution CandidateFinder
begins by decomposing the question into a set of dense vec-
tor representations, termed instructions {ik}Kk=1. These in-
structions are dynamically updated using KG-aware infor-
mation derived from iterative reasoning steps. The reason-
ing process emulates a breadth-first search (BFS) strategy by
treating instructions as a set and determining their execution
order adaptively. At each GNN layer l, the node representa-
tions are updated as:

h(l)v = ψ
(
h(l−1)
v , ϕ

(
{m(l)

v′v : v′ ∈ N(v)|ik}
))

, (1)

where h(l)v represents the node embedding at layer l, ϕ ag-
gregates messages from neighboring nodes v′, and ψ fuses
these representations with previous node embeddings. This
mechanism ensures that only question-relevant facts are ag-
gregated.

Adaptive Updates To improve reasoning over complex
questions, CandidateFinder employs an adaptive mechanism
that iteratively updates instructions and node embeddings.
At each reasoning stage t, the final node representationsHout
are used to adjust the initial instructions {ik}Kk=1 and seed
representations, ensuring alignment with the KG semantics:

i
(t+1)
k = (1− gk)⊙ i

(t)
k + gk ⊙Wq

(
i
(t)
k ∥he∥ · · ·

)
, (2)

where he represents the KG-aware information from seed
entities, gk is a gating mechanism, and Wq is a learnable
transformation matrix.



Figure 2: The prompt template incorporating candidate enti-
ties and candidate paths provided by CandidateFinder.

Candidate Entities The final node representations are
processed to classify nodes as candidate answers or non-
answers. This is achieved through a softmax operation over
the probability scores of all nodes in the subgraph. Nodes
with the highest probabilities are ranked as the top candi-
dates.

Candidate Paths Starting from the question entity and
candidate entities mentioned in the question, we apply the
BFS algorithm to find all shortest paths in the subgraph con-
necting the question entity to the candidate entities.

PathFinder: LLM-Driven Reasoning Paths
Generation and Utilization Agent
To facilitate faithful and interpretable reasoning for KBQA,
our framework integrates a PathFinder agent inspired by the
Reasoning on Graphs (RoG) method (Luo et al. 2023b).
PathFinder leverages LLMs to generate reasoning plans (re-
lation paths) and retrieve reasoning paths from knowledge
base, ultimately synthesizing these paths to derive accurate
and interpretable answers.

Relation Path Generation PathFinder initiates reasoning
by prompting the LLM to generate relation paths grounded
in KG structures. A relation path consists of a sequence of
semantic relations between entities, serving as a faithful rea-
soning plan. For example, to answer the question, “Who is
the child of Alice?”, a generated relation path might be:

z = marry to → father of.

This path corresponds to the plan: first, identify the spouse
of Alice, and second, identify the child of the spouse.

Retrieval of Reasoning Paths Using the relation paths
as a guide, PathFinder employs a constrained breadth-first
search (BFS) on the KG to retrieve corresponding reasoning
paths. These reasoning paths are grounded instances of the
relation path, linking specific entities. For example, based on
the relation path above, a reasoning path could be:

wz = Alice
marry to−−−−−−→ Bob

father of−−−−−−→ Charlie.

Reasoning with Retrieved Paths The retrieved reasoning
paths are then processed by the LLM to generate the final
answer. The LLM reasons over multiple paths, identifying
the most relevant ones and synthesizing the results into an
interpretable answer. For instance, the LLM would conclude
from the example above that “Charlie” is the child of Alice.

Optimization of Reasoning PathFinder optimizes reason-
ing through two key objectives:

1. Planning Optimization: Ensures that the generated re-
lation paths are faithful to the KG structure by aligning
LLM outputs with valid KG-based paths.

2. Retrieval-Reasoning Optimization: Maximizes the
probability of generating accurate answers based on the
retrieved reasoning paths.

SelfCorrector: Step-by-Step Multi-round
Self-correction Agent
To address the challenges of error accumulation and in-
efficiency in multi-step reasoning, our methodology incor-
porates a SelfCorrector agent inspired by the QueryAgent
framework (Huang et al. 2024). The SelfCorrector employs
an self-correction mechanism to ensure reliable reasoning
over knowledge graphs.

Step-by-Step Reasoning and Action The SelfCorrector
frames the KBQA process as an iterative, multi-turn reason-
ing task. At each step, the model generates a thought and ex-
ecutes a corresponding action to refine its query strategy on
the subgraph. These actions interact with the KB and other
environments, with their execution outcomes serving as ob-
servations to inform and adjust subsequent steps. Leverag-
ing the reasoning capabilities and language understanding of
large models, the SelfCorrector dynamically adjusts its strat-
egy based on observations, correcting errors and iteratively
improving the query until the final answer is determined.

Error Detection and Correction Based on the envi-
ronmental feedback, the system performs adaptive self-
correction tailored to the detected error type. For example:

• When the KB returns no results, the system analyzes the
relation used in the query and provides alternative sug-
gestions or revisions. For instance, it might observe: ”Er-
ror during execution: No results found for the given rela-
tion”.

• If the Python Interpreter detects a syntax error
or invalid function call, the system offers cor-
rective feedback. For example, when the action
set answer["final answer1’] has an in-
correct format, it generates feedback such as: ”In-
valid set answer action format. Correct format:
set answer(variable)”.

• Logical inconsistencies identified by the
Reasoning Memory lead the system to re-
vise previous steps. For example, if an ac-
tion like get neighbors("entity1",
"relation1","entity2") is formatted incor-
rectly, the system responds with: ”Invalid get neighbors



Figure 3: The prompt template for FewShot, omitting self-
correction through Thought, Action, and Observation.

action format. Correct format is get neighbors(entity,
relation)”.

These feedback observations are dynamically analyzed,
enabling the system to refine its reasoning process it-
eratively. Additionally, the system ensures robustness by
suggesting valid actions when an invalid one is de-
tected, such as: ”Invalid action. Use ’get relations(entity)’,
’get neighbors(entity, relation)’, or ’set answer(variable)’.”

Through this feedback-driven approach, the system not
only corrects errors but also optimizes the reasoning process,
ensuring precise and efficient resolution of complex queries.

ThoughtBeforeThought
The ThoughtBeforeThought module is designed to optimize
the reasoning process by leveraging information provided
by PathFinder and CandidateFinder to directly determine
the answer when sufficient evidence is available. By ana-
lyzing candidates and reasoning paths early in the process,
ThoughtBeforeThought can often bypass the need for multi-
step reasoning, reducing computational resource consump-
tion and minimizing calls to large language models (LLMs).

Efficient Early Reasoning ThoughtBeforeThought eval-
uates whether the combined outputs of CandidateFinder and
PathFinder provide enough information to confidently an-
swer the question. It consolidates:
• Candidate entities identified by CandidateFinder.
• Reasoning paths generated by PathFinder that directly

link the question entity to potential answers.
When these components form a clear and unambiguous rea-
soning chain, the module sets the answer directly without
invoking further reasoning steps.

Examples of Early Answer Determination In cases
where the evidence is sufficient, ThoughtBeforeThought en-
ables direct answer determination,as shown in Figure4.

Experimental Settings
Dataset and Evaluation Metrics
We evaluated our model on two benchmark datasets, We-
bQuestionsSP (WebQSP) (Yih et al. 2016) and Complex

Figure 4: The figure illustrates how the ThoughtBefore-
Thought module evaluates available candidates and reason-
ing paths before initiating further reasoning. With sufficient
evidence from m.03 r3 (Jamaica) linking to valid answers
m.01428y (Jamaican English) and m.04ygk0 (Jamaican Cre-
ole), the module directly sets the answer, avoiding additional
steps and reducing computational overhead.

WebQuestions (CWQ) (Talmor and Berant 2018), both
based on Freebase (Bollacker et al. 2008). These datasets
contain questions requiring up to 2-hop and 4-hop reason-
ing, respectively, as shown in Table 1.

To evaluate the performance of our model, we use stan-
dard metrics including Precision, Recall, F1-score, and
Hit@1. These metrics are computed by comparing the
predicted answers (pred) with the ground truth answers
(gt answer):

• Precision: Defined as the ratio of correctly predicted an-
swers to the total number of predicted answers, i.e.,

Precision =
|pred set ∩ gt set|

|pred set|
.

• Recall: Defined as the ratio of correctly predicted an-
swers to the total number of ground truth answers, i.e.,

Recall =
|pred set ∩ gt set|

|gt set|
.

• F1-score: The harmonic mean of Precision and Recall,
calculated as:

F1 = 2 · Precision · Recall
Precision + Recall

.

• Hit@1: A binary metric indicating whether at least one
ground truth answer is present in the predicted set:

Hit@1 =

{
1.0 if ∃x ∈ gt set such that x ∈ pred set,
0.0 otherwise.

The ground truth set (gt set) includes both text an-
swers and knowledge base IDs, while the predicted set
(pred set) is constructed by normalizing and matching
strings in the predictions.



Table 1: Dataset Statistics

Datasets Train Dev Test
WebQSP 2,848 250 1,639
CWQ 27,639 3,519 3,531

GNN Configuration in CandidateFinder
For CandidateFinder agent, GNNs are employed to model
the candidate answer generation process, following the
methodology outlined in (Mavromatis and Karypis 2024).
The GNN configurations for different datasets are as fol-
lows:
• WebQSP Dataset:

– GNN Model: ReaRev
– Language Model: Sentence-BERT (SBERT)

• CWQ Dataset:
– GNN Model: ReaRev
– Language Model: LMsr

LLMs for PathFinder
We utilize the fine-tuned large language model (RoG)
described in (Luo et al. 2023b) as the backbone for
the PathFinder agent. Specifically, we use LLaMA2-Chat-
7B (Touvron et al. 2023), which has been instruction fine-
tuned on the training splits of WebQSP, CWQ, and Free-
base for 3 epochs. This fine-tuning ensures the model is op-
timized for generating reasoning paths in KB. For each ques-
tion, PathFinder employs beam search to generate the top-3
relation paths, ensuring a diverse and relevant set of reason-
ing paths for accurate answer derivation.

SelfCorrector Configuration
The SelfCorrector agent utilizes the OpenAI API(Achiam
et al. 2023) to access the GPT-4o-mini large language model
for iterative reasoning and self-correction. The maximum
number of reasoning steps is set to 7, ensuring a balance
between computational efficiency and reasoning depth. This
configuration allows the SelfCorrector to effectively refine
query strategies and correct errors dynamically while main-
taining resource efficiency.

Hardware Setup
All experiments were conducted on a machine equipped
with an Intel Core i9 processor, 32GB of RAM, and an
NVIDIA RTX 4090 GPU with 24GB of VRAM.

Results and Discussion
Results and Analysis
As shown in Figure 5, our framework integrates multiple
reasoning agents that collaborate seamlessly. The Candi-
dateFinder narrows the search space by generating candidate
answers and associated paths, while the PathFinder ensures
logical consistency by reasoning over these paths. The Self-
Corrector enhances robustness through iterative error detec-
tion and refinement, ensuring precise answers even in the
face of ambiguous or incomplete information.

Figure 5: An example illustrating the full KBQA reason-
ing process using our proposed framework. The process
includes CandidateFinder for identifying candidates and
paths, PathFinder for exploring reasoning paths, and Self-
Corrector for iterative answer refinement. This showcases
how subgraph-based reasoning, intermediate thoughts, and
feedback-driven corrections contribute to accurate and in-
terpretable answers.

Table 2 presents the performance comparison of various
methods on the WebQSP dataset. QueryAgent, as a Seman-
tic Parsing-based approach focused on generating SPARQL
queries, performs the weakest among the methods due to its
limited ability to handle complex reasoning tasks and uti-
lize subgraph information effectively. RoG, recognized as
the current state-of-the-art (SOTA) method, achieves strong
performance by leveraging fine-tuning on large-scale KBQA
datasets, enabling it to handle diverse and complex queries
effectively. Our method outperforms RoG in terms of over-
all reasoning and recall capabilities by integrating subgraph
information, which enhances its ability to cover potential
answers and tackle complex queries. SR+NSM w E2E and
ReaRev deliver competitive results; however, their reliance
on pre-defined pathways or specific reasoning structures
limits their generalization compared to our approach. Over-
all, our method demonstrates balanced improvements across
key metrics, showcasing the advantages of subgraph-based
reasoning in improving reasoning depth and answer accu-
racy.

Table 2: Performance Comparison on WebQSP Dataset

Method F1 Precision Hit@1 Recall
RoG(Luo et al. 2023b) 0.7167 0.7816 0.8498 0.7165
QueryAgent(IR)(Huang et al. 2024) 0.4035 0.4723 0.5452 0.4000
ReaRev(Mavromatis and Karypis 2022) 0.7090 - 0.7640 -
SR+NSM w E2E(Zhang et al. 2022) 0.6410 - 0.6950 -
Ours 0.7242 0.7823 0.8278 0.7365

The experimental results on the CWQ dataset, presented
in Table 3, highlight the challenges posed by the complex-
ity of CWQ queries. Notably, we observed that setting the
maximum retry attempts between 15 and 20 significantly
improves the ability to derive the final answer. Addition-
ally, part of the performance improvement stems from the
model’s inherent knowledge. When the model fails to in-
fer an answer by reasoning through the subgraph, it some-
times leverages its internal knowledge to provide a response,
which is occasionally correct. This phenomenon contributes
to the observed improvements in both Hit@1 and F1 scores.



The combination of iterative subgraph reasoning and the
model’s internal knowledge results in more accurate and ro-
bust answers to the complex queries found in CWQ.

Table 3: Performance Comparison on CWQ Dataset

Method Hit@1 F1
ReaRev 52.9 -
SR+NSM 50.2 47.1
RoG 57.8 56.2
GNN-RAG+RA(Mavromatis and Karypis 2024) 62.8 60.4
Ours 64.9 61.8

Ablation Study
Table 4 presents an ablation study on the impact of Candi-
dateFinder on the WebQSP dataset. Excluding PathFinder,
thought before thought, and SelfCorrecter, the experiment
directly inputs subgraph information into the LLMs. Using
CandidateFinder significantly improves all metrics by nar-
rowing the search space and focusing on relevant entities.
Without it, performance drops, underscoring its role in en-
hancing reasoning efficiency and accuracy.

Table 4: Ablation Study Results on WebQSP with and with-
out CandidateFinder

Condition F1 Precision Recall Hit@1
With CandidateFinder 0.5302 0.6078 0.5258 0.6795
Without CandidateFinder 0.3961 0.4627 0.3957 0.5409

Table 5 shows the impact of thought before thought
with only SelfCorrecter and CandidateFinder. Incorporating
thought before thought improves all metrics by enhancing
reasoning steps and reducing errors. Without it, performance
drops, highlighting its role in maintaining accuracy and con-
sistency.

Table 5: Ablation Study: Effectiveness of
thought before thought on WebQSP Dataset

Condition F1 Precision Recall Hit@1
With thought before thought 0.6580 0.7672 0.6388 0.7979
Without thought before thought 0.6171 0.6965 0.6130 0.7466

Table 6 shows the impact of PathFinder with Candi-
dateFinder, thought before thought, and SelfCorrecter. In-
cluding PathFinder, which provides reasoning paths and
answers, improves F1, recall, and Hit@1, highlighting its
role in guiding logical flow and refining results. Without
PathFinder, performance declines, emphasizing its impor-
tance for reasoning accuracy.

Conclusion
In this paper, we propose a KBQA framework that com-
bines subgraph-based reasoning with multi-agent collabo-
ration to address the limitations of existing methods. By
leveraging CandidateFinder, PathFinder, and SelfCorrector,
our approach improves reasoning accuracy, recall, and ro-
bustness while handling complex queries effectively. The

Table 6: Ablation Study: Effectiveness of PathFinder on We-
bQSP Dataset

Condition F1 Precision Recall Hit@1
With PathFinder 0.6886 0.7585 0.6850 0.8163
Without PathFinder 0.6580 0.7672 0.6388 0.7979

integration of subgraph information and dynamic feedback
mechanisms enhances answer coverage and consistency. Fu-
ture work will explore optimizing efficiency and extending
the framework to larger, more diverse knowledge bases.
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